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1.  Introduction 

Accurate centre-of-mass corrections for geodetic spherical satellites are expected to contribute 
to accurate determination of the scale of the earth, i.e., the scale of terrestrial reference frame and 
the geocentric gravitational constant GM. 

Historically, a fixed centre-of-mass correction value for each satellite has been uniformly 
applied for all laser ranging systems.  For example, a correction of 251 mm has been used for 
LAGEOS 1 and 2 [1], 1010 mm for AJISAI [2], and 576 mm for ETALON 1 and 2 [3].  
However, the detection timing depends upon the characteristics of individual laser ranging 
systems and these differences cannot be ignored when we aim at the millimetre precision.  
Centre-of-mass corrections should, therefore, be given as system-dependent values.  This is 
because, compared to the transmitted laser pulse, the satellite retroreflection is broadened and 
deformed due to reflection from multiple cube corner reflectors (so-called satellite signature 
effect [4]; see Fig. 1).  It has nevertheless been almost impossible to precisely observe or model 
the actual retroreflected pulse shape.  In particular, the far field diffraction effect is the most 
difficult to model precisely and accurately. 

In this paper, we first present the basic optical retroreflection model, and then discuss how to 
retrieve the actual retroreflected pulse.  We deal here with three types of spherical geodetic 
satellites, LAGEOS, AJISAI and ETALON, 
commonly observed by the global ILRS 
network. 
 
2.  Response from a single reflector 

The specifications of the three types of 
satellites are listed in Table 1.  Their 
diameters range from 0.60 m (LAGEOS) to 
2.15 m (AJISAI).  The dimensions and 
shapes of the reflectors also differ, as shown 
in Fig. 2.  The aperture of the AJISAI 

Fig. 1: Satellite signature effect. 
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reflector is a triangle with cut vertices.  That of 
ETALON is hexagonal, and that of LAGEOS is 
circular.  The back faces of the ETALON 
reflectors are coated with aluminium, while those 
of the AJISAI and LAGEOS reflectors are not.  
The surface of each of the LAGEOS reflectors is 
recessed 1 mm below the surface of the reflector 
holder, so the front face can be partly shadowed.  
The holders of the AJISAI reflectors extend 2 
mm above the level of the reflectors, therefore 
also partly obstructing the front face.  
Shadowing is not possible with the ETALON 
reflectors because the side edges of the holders 
are cut obliquely.  

This variety in the reflector properties results 
in different effective reflection areas.  The area 
is a function of the viewing angle and is 
calculated as the overlapping area of the input 
and output apertures [5].  We numerically 
calculated a 2D map of the effective reflection 
area for the three types of reflectors, taking into account the shadowing effect.  Fig. 3 displays 
the results as a function of the 2D angle of incidence, where it is clear that the three types of 
reflectors have distinctly different characteristics. 

Reflectance is modelled as a double refraction at the front face and triple reflection at the back 
face.  It depends largely on whether the back faces of the reflectors are coated.  For the 
uncoated reflectors of LAGEOS and AJISAI, most of the retroreflection is obtained as a result of 
the triple total internal reflection at the back face.  As illustrated in Fig. 4, this causes a strong 
azimuthal reflectance pattern every 120 degrees when the angle of incidence is wider than 17 
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Fig. 2: Dimension of cube corner reflectors. 

Table 1. Specifications of satellites. 

 LAGEOS-1 / LAGEOS-2 AJISAI ETALON-1 / ETALON-2 
Launch 4 May 1976 / 22 Oct 1992 12 Aug 1986 10 Jan 1989 / 31 May 1989 

Mass (kg) 411 / 405 685 1415 
Approximate diameter (m) 0.60 2.15 1.294 

Number of reflectors 426 1436 2146 
Material of reflectors Fused silica (422) and 

germanium (4) 
Fused silica Fused silica (2140) and 

germanium (6) 

 



degrees.  By contrast, the aluminium-coated 
ETALON reflectors have a much wider acceptance 
angle with no azimuthal dependence.  The 
resulting reflectance pattern is as shown in the 
lower map in Fig. 4. 

In this way, for an effective reflection area a and 
reflectance e as a function of the 2D angle of 
incidence, we can model the retroreflection intensity.  
If we neglect altogether the far-field diffraction of 

the reflectors, then 
 

   (intensity) ae∝  .  (1) 
 
In previous studies [6-7], intensity has been modelled as 

Fig. 3: Effective reflection area (normalised).

Fig. 4: Reflectance. 



 
   (intensity) ea 2∝  , (2) 

 
which implicitly assumes that there is no relative motion between the satellite and terrestrial 
station, and that the far-field diffraction pattern is projected symmetrically around the line of 
sight.  Neither of these two models is theoretically correct of course and we now discuss our 
empirical approach to solving this problem. 
 
3.  Retrieving the satellite response function 

Let us now consider the response from an entire satellite.  To construct a function of the 
retroreflection intensity for an entire satellite using knowledge of the 3D location of each of its 
reflectors, we have to calculate the time relations between the individual reflectors and the 
satellite's centre of mass [1].  We can then model the retroreflected pulse from an entire satellite 
by summing up the return intensities from all the reflectors, applying the delay for each.  Here 
we neglect the effect of interference between the return signals from the different reflectors. 

The remaining question is how we should model the return intensity, taking into account the 
diffraction effect, using models (1), (2) or something different.  The approach we will adopt is to 
compare the models with single-photon ranging data.  After computing the satellite response 
function as described above, we can convolve it with a function representing the response of the 
ranging system. 

Due to velocity aberration, the far-field diffraction pattern does not fall symmetrically along 
the line of sight.  The deviation amounts to 50 microradians (~ 10 arcseconds) at most for the 
geodetic satellites.  The cube corner reflectors on geodetic satellites are sometimes 'spoiled' such 
that the angles between the reflective faces (dihedral angles) deviate slightly from 90 degrees so 
that the diffraction effect partly compensates for the velocity aberration.  For example, the 
dihedral angle of the LAGEOS-2 reflectors is 90 degrees and 1.25 arcseconds with a 
manufacturing error of 0.5 arcseconds [1].  The AJISAI reflectors were not intentionally spoiled, 
but the manufacturing error amounts to 2 arcseconds.  The degree or otherwise of spoiling is not 
known for the ETALON satellites.  Thus for LAGEOS and AJISAI it would be possible to 
simulate the far-field diffraction pattern using the available information, but the manufacturing 
error prevents precise numerical computation.  Moreover, we do not know the extent to which 
thermal deformation of a reflector disturbs the diffraction pattern.  As a result, little is known 
about the actual diffraction effect for orbiting satellites.  

Instead, we devised an empirical method for determining the profile of the response function 
without precisely calculating the far-field diffraction pattern.  Rather than choosing either eq. (1) 
or (2), we chose to find the best-fit value of n in: 
 



   (intensity) ean∝ .  (3) 
 

The full-rate range residual histogram from a 
single photon system is useful for recovering the 
average response function of a satellite.  Under 
ideal conditions with no system noise, the residual 
histogram of a sufficient amount of full-rate data 
would agree perfectly with the average response 
function.  However, in actual data sets, the 
full-rate residual histogram may be considered to 
be a convolution of the satellite response function 
with the system response.   

We began our search for best-fit n in eq. (3) by 
collecting full-rate residual histograms obtained at 
the NERC Herstmonceux station, United 
Kingdom, which adheres to a single-photon 
detection policy and uses a SPAD detector [4].  
We used a residual histogram of the small array 
ERS-2 satellite ranging data to represent the 
system response.  Since this includes an error 
source due to transmission of the laser pulse 
through the atmosphere, this is a more realistic 
estimate of the true system response than a 
residual histogram of terrestrial target ranging data.  
Due to the characteristics of a single-photon 
avalanche diode (SPAD), the residual histogram is 
skewed with a long tail that is cut significantly in the conventional data reduction process.  
However, for our use of this data to represent the system response profile, the full ERS-2 residual 
profile was used unedited. 

The response functions of our three satellites, convolved with the ERS-2-based system 
response, were generated from (3) for n = 0.9 to 2.1 with a step size of 0.1.  Then, the resulting 
distributions were compared with the Herstmonceux full-rate residual histograms for LAGEOS, 
AJISAI and ETALON.  These residual histograms were constructed from data collected for a 
few tens of passes during June-July 2000 and September-October 2001 at the Herstmonceux 
station.  We used data already filtered on site, unlike the ERS-2 data.   

Six selected cases for LAGEOS, AJISAI and ETALON are shown in Fig. 5 for comparison.  

Fig. 5a: Response function vs fullrate residual 

histogram (LAGEOS). 



Two parameters, the vertical scale and horizontal offset, were adjusted to fit each theoretical 
curve to a residual histogram.  The fit with n = 2.0 that had been adopted in the previous studies 
[6-7] is clearly not very good; the response function model is too narrow.  The fit is better with n 
= 1.0 in all cases. 

We then used the differences between the convolved functions and the Herstmonceux residuals 
to estimate the best-fit n.  For range data obtained during June-July 2000, the best fits were 
obtained for n = 1.2 for LAGEOS, 1.1 for AJISAI and 1.3 for ETALON.  For 
September-October 2001 with more data, the results were 1.1 for LAGEOS (Fig. 5a), 1.2 for 
AJISAI (Fig. 5b), and 1.3 for ETALON (Fig. 5c). 

We also obtained the full-rate data of ETALON and CHAMP (the small laser array on 

Fig. 5b: Response function vs fullrate residual 

histogram (AJISAI). 

Fig. 5c: Response function vs fullrate residual 

histogram (ETALON). 



CHAMP makes it another ideal target for 
determining system response) from the Graz 
laser station, Austria.  The return energy in 
their CHAMP (low orbit) ranging was kept at a 
low level especially for this study, and most of 
the return from the high-orbiting ETALON was 
likely to also be at single-photon levels.  
Nevertheless, as Graz does not strictly keep at 
a single-photon level of return, we additionally 
rejected data whenever the return rate was 
higher than 10%, in order to treat only the 
single-photon data.  Finally, applying the 
same procedure as for the Herstmonceux case, 
we obtained a best-fit n of 1.3, in good 
agreement with the Herstmonceux results for 
ETALON.   

Given these consistent results, we obtained 
the value of parameter n: 
 

   n (LAGEOS) = 1.1 
   n (AJISAI) = 1.2 
   n (ETALON) = 1.3. 

 
The resulting response functions for the 

three satellites using these values of n and 
convolved with negligibly narrow 1-ps FWHM 
Gaussian distributions to represent system 
noise are shown in Fig. 6.  The empirically adjusted values of n for each satellite were used to 
compute them and also shown for comparison are the functions obtained when n was 1.0 and 2.0.  
When these extreme values are used, there is clearly a significant variation in the response 
functions.  However, it is clear that the realistic uncertainty of 0.1 in our determination of n 
would cause only a slight change in the functions and have only marginal effect on the computed 
centre-of-mass corrections.  
 
4.  Conclusions 

The satellite response functions for LAGEOS, AJISAI and ETALON were empirically derived 
using full-rate residual profiles.  The results suggest that the diffraction effect must be taken into 

Fig. 6: Empirically derived response function for 

LAGEOS, AJISAI and ETALON (blue curves). 



consideration to some extent because the values of n were all larger than 1.0, but they also 
suggest that the effect is much smaller than we had assumed in previous studies because the 
values of n are significantly smaller than 2.0. 

System dependent centre-of-mass corrections for these satellites were also calculated [8] based 
on these empirically derived response functions.  The corrections vary about by 1 cm for 
LAGEOS and by 4-5 cm for AJISAI and ETALON. 
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